636 research outputs found

    PATENTS, R&D AND LAG EFFECTS: EVIDENCE FROM FLEXIBLE METHODS FOR COUNT PANEL DATA ON MANUFACTURING FIRMS

    Get PDF
    Hausman, Hall and Griliches (1984) and Hall, Griliches and Hausman (1986) investigated whether there was a lag in the patent-R&D relationship for the U.S. manufacturing sector using 1970¿s data. They found that there was little evidence of anything but contemporaneous movement of patents and R&D. We reexamine this important issue employing new longitudinal patent data at the firm level for the U.S. manufacturing sector from 1982 to 1992. To address unique features of the data, we estimate various distributed lag and dynamic multiplicative panel count data models. The paper also develops a new class of count panel data models based on series expansion of the distribution of individual effects. The empirical analyses show that, although results are somewhat sensitive to different estimation methods, the contemporaneous relationship between patenting and R&D expenditures continues to be rather strong, accounting for over 60% of the total R&D elasticity. Regarding the lag structure of the patents-R&D relationship, we do find a significant lag in all empirical specifications. Moreover, the estimated lag effects are higher than have previously been found, suggesting that the contribution of R&D history to current patenting has increased from the 1970¿s to the 1980¿s.Innovative activity, Patents and R&D, Individual effects, count panel data methods.

    Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    Get PDF
    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and light sources.Comment: 18 pages, 4 figures, 1 tabl

    Weak collisionless shocks in laser-plasmas

    Get PDF
    We obtain a theory describing laminar shock-like structures in a collisionless plasma and examine the parameter limits, in terms of the ion sound Mach number and the electron/ion temperature ratio, within which these structures exist. The essential feature is the inclusion of finite ion temperature with the result that some ions are reflected from a potential ramp. This destroys the symmetry between upstream and downstream regions that would otherwise give the well-known ion solitary wave solution. We have shown earlier (Cairns et al 2014 Phys. Plasmas 21 022112) that such structures may be relevant to problems such as the existence of strong, localized electric fields observed in laser compressed pellets and laser acceleration of ions. Here we present results on the way in which these structures may produce species separation in fusion targets and suggest that it may be possible to use shock ion acceleration for fast ignition.PostprintPeer reviewe

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    Full text link
    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV

    The effect of phase front deformation on the growth of the filamentation instability in laser–plasma interactions

    Get PDF
    Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of I lambda(2) >= 10(14) W cm(-2) mu m(2), even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser-plasma interactions that require high degrees of uniform irradiation are discussed

    Dynamic Control of Laser Produced Proton Beams

    Get PDF
    The emission characteristics of intense laser driven protons are controlled using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a few ps timescale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.Comment: 9 Pages, 5 figure
    corecore